
2 Matrix Algebra

INTRODUCTORY EXAMPLE

Computer Models in Aircraft Design
To	design	the	next	generation	of	commercial	and	military
aircraft, engineers	at	Boeing’s	Phantom	Works	use	3D
modeling	and	computational	fluid	dynamics	(CFD).	They
study	the	airflow	around	a	virtual	airplane	to	answer
important	design	questions	before	physical	models	are
created. This	has	drastically	reduced	design	cycle	times
and	cost—and	linear	algebra	plays	a	crucial	role	in	the
process.

The	virtual	airplane	begins	as	a	mathematical	“wire-
frame”	model	that	exists	only	in	computer	memory	and
on	graphics	display	terminals. (A model	of	a	Boeing
777	is	shown.) This	mathematical	model	organizes	and
influences	each	step	of	the	design	and	manufacture	of	the
airplane—both	the	exterior	and	interior. The	CFD analysis
concerns	the	exterior	surface.

Although	the	finished	skin	of	a	plane	may	seem
smooth, the	geometry	of	the	surface	is	complicated. In
addition	to	wings	and	a	fuselage, an	aircraft	has	nacelles,
stabilizers, slats, flaps, and	ailerons. The	way	air	flows
around	these	structures	determines	how	the	plane	moves
through	the	sky. Equations	that	describe	the	airflow	are
complicated, and	they	must	account	for	engine	intake,
engine	exhaust, and	the	wakes	left	by	the	wings	of	the
plane. To	study	the	airflow, engineers	need	a	highly	refined
description	of	the	plane’s	surface.

A computer	creates	a	model	of	the	surface	by	first
superimposing	a	three-dimensional	grid	of	“boxes”	on	the

original	wire-frame	model. Boxes	in	this	grid	lie	either
completely	inside	or	completely	outside	the	plane, or	they
intersect	the	surface	of	the	plane. The	computer	selects
the	boxes	that	intersect	the	surface	and	subdivides	them,
retaining	only	the	smaller	boxes	that	still	intersect	the
surface. The	subdividing	process	is	repeated	until	the	grid
is	extremely	fine. A typical	grid	can	include	over	400,000
boxes.

The	process	for	finding	the	airflow	around	the	plane
involves	repeatedly	solving	a	system	of	linear	equations
Ax D b that	may	involve	up	to	2	million	equations	and
variables. The	vector b changes	each	time, based	on	data
from	the	grid	and	solutions	of	previous	equations. Using
the	fastest	computers	available	commercially, a	Phantom
Works	team	can	spend	from	a	few	hours	to	several	days
setting	up	and	solving	a	single	airflow	problem. After	the
team	analyzes	the	solution, they	may	make	small	changes
to	the	airplane	surface	and	begin	the	whole	process	again.
Thousands	of	CFD runs	may	be	required.

This	chapter	presents	two	important	concepts	that
assist	in	the	solution	of	such	massive	systems	of	equations:

� Partitioned	matrices: A typical 	CFD system
of	equations	has	a	“sparse”	coefficient	matrix
with	mostly	zero	entries. Grouping	the	variables
correctly	leads	to	a	partitioned	matrix	with	many
zero	blocks. Section	2.4	introduces	such	matrices
and	describes	some	of	their	applications.
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92 CHAPTER 2 Matrix Algebra

� Matrix	factorizations: Even	when	written	with
partitioned	matrices, the	system	of	equations	is
complicated. To	further	simplify	the	computations,
the	CFD software	at	Boeing	uses	what	is	called
an	LU factorization	of 	 the	coefficient 	matrix.
Section	2.5	discusses	LU and	other	useful	matrix
factorizations. Further	details	about	factorizations
appear	at	several	points	later	in	the	text.

To	analyze	a	solution	of	an	airflow	system, engineers
want	to	visualize	the	airflow	over	the	surface	of	the	plane.
They	use	computer	graphics, and	linear	algebra	provides
the	engine	for	the	graphics. The	wire-frame	model	of	the
plane’s	surface	is	stored	as	data	in	many	matrices. Once	the
image	has	been	rendered	on	a	computer	screen, engineers
can	change	its	scale, zoom	in	or	out	of	small	regions, and
rotate	the	image	to	see	parts	that	may	be	hidden	from	view.
Each	of	these	operations	is	accomplished	by	appropriate

Modern	CFD has	revolutionized	wing	design. The	Boeing
Blended	Wing	Body	is	in	design	for	the	year	2020	or	sooner.

matrix	multiplications. Section	2.7	explains	the	basic
ideas.

WEB

Our	ability	to	analyze	and	solve	equations	will	be	greatly	enhanced	when	we	can	perform
algebraic	operations	with	matrices. Furthermore, the	definitions	and	theorems	in	this
chapter	provide	some	basic	tools	for	handling	the	many	applications	of	linear	algebra
that	involve	two	or	more	matrices. For	square	matrices, the	Invertible	Matrix	Theorem
in	Section 2.3	ties	together	most	of	the	concepts	treated	earlier	in	the	text. Sections 2.4
and	2.5	examine	partitioned	matrices	and	matrix	factorizations, which	appear	in	most
modern	uses	of	linear	algebra. Sections 2.6	and	2.7	describe	two	interesting	applications
of	matrix	algebra, to	economics	and	to	computer	graphics.

2.1 MATRIX OPERATIONS

If A is	an m � n matrix—that	is, a	matrix	with m rows	and n columns—then	the	scalar
entry	in	the i th	row	and j th	column	of A is	denoted	by aij and	is	called	the .i; j /-entry
of A. See	Fig. 1. For	instance, the .3; 2/-entry	is	the	number a32 in	the	third	row, second
column. Each	column	of A is	a	list	of m real	numbers, which	identifies	a	vector	in Rm.
Often, these	columns	are	denoted	by a1; : : : ; an, and	the	matrix A is	written	as

A D
�
a1 a2 � � � an

�
Observe	that	the	number aij is	the i th	entry	(from	the	top)	of	the j th	column	vector aj .

The diagonal	entries in	an m � n matrix A D Œ aij � are a11; a22; a33; : : : ; and	they
form	the main	diagonal of A. A diagonal	matrix is	a	square n � n matrix	whose
nondiagonal	entries	are	zero. An	example	is	the n � n identity	matrix, In. An m � n

matrix	whose	entries	are	all	zero	is	a zero	matrix and	is	written	as	0. The	size	of	a	zero
matrix	is	usually	clear	from	the	context.
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a11

am1

a1n

amn

ai1 ain

a1 j

Column
j

am j

a1 a na j

ai jRow i = A

FIGURE 1 Matrix	notation.

Sums and Scalar Multiples
The	arithmetic	for	vectors	described	earlier	has	a	natural	extension	to	matrices. We
say	that	two	matrices	are equal if	they	have	the	same	size	(i.e., the	same	number	of
rows	and	the	same	number	of	columns)	and	if	their	corresponding	columns	are	equal,
which	amounts	to	saying	that	their	corresponding	entries	are	equal. If A and B are
m � n matrices, then	the sum A C B is	the m � n matrix	whose	columns	are	the	sums
of	the	corresponding	columns	in A and B . Since	vector	addition	of	the	columns	is	done
entrywise, each	entry	in A C B is	the	sum	of	the	corresponding	entries	in A and B . The
sum A C B is	defined	only	when A and B are	the	same	size.

EXAMPLE 1 Let

A D

�
4 0 5

�1 3 2

�
; B D

�
1 1 1

3 5 7

�
; C D

�
2 �3

0 1

�
Then

A C B D

�
5 1 6

2 8 9

�
but A C C is	not	defined	because A and C have	different	sizes.

If r is	a	scalar	and A is	a	matrix, then	the scalar	multiple rA is	the	matrix	whose
columns	are r times	the	corresponding	columns	in A. As	with	vectors, �A stands	for
.�1/A, and A � B is	the	same	as A C .�1/B .

EXAMPLE 2 If A and B are	the	matrices	in	Example 1, then

2B D 2

�
1 1 1

3 5 7

�
D

�
2 2 2

6 10 14

�
A � 2B D

�
4 0 5

�1 3 2

�
�

�
2 2 2

6 10 14

�
D

�
2 �2 3

�7 �7 �12

�
It	was	unnecessary	in	Example 2	to	compute A � 2B as A C .�1/2B because	the

usual	rules	of	algebra	apply	to	sums	and	scalar	multiples	of	matrices, as	the	following
theorem	shows.

THEOREM 1 Let A; B , and C be	matrices	of	the	same	size, and	let r and s be	scalars.

a. A C B D B C A

b. .A C B/ C C D A C .B C C /

c. A C 0 D A

d. r.A C B/ D rA C rB

e. .r C s/A D rA C sA

f. r.sA/ D .rs/A
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Each	equality	in	Theorem 1	is	verified	by	showing	that	the	matrix	on	the	left	side	has
the	same	size	as	the	matrix	on	the	right	and	that	corresponding	columns	are	equal. Size
is	no	problem	because A, B , and C are	equal	in	size. The	equality	of	columns	follows
immediately	from	analogous	properties	of	vectors. For	instance, if	the j th columns	of
A, B , and C are aj , bj , and cj , respectively, then	the j th columns	of .A C B/ C C

and A C .B C C / are

.aj C bj / C cj and aj C .bj C cj /

respectively. Since	these	two	vector	sums	are	equal	for	each j , property	(b)	is	verified.
Because	of	the	associative	property	of	addition, we	can	simply	write A C B C C

for	the	sum, which	can	be	computed	either	as .A C B/ C C or	as A C .B C C /. The
same	applies	to	sums	of	four	or	more	matrices.

Matrix Multiplication
When	a	matrix B multiplies	a	vector x, it	transforms x into	the	vector Bx. If	this	vector
is	then	multiplied	in	turn	by	a	matrix A, the	resulting	vector	is A.Bx/. See	Fig. 2.

x

Multiplication

by B

Bx

Multiplication

by A

A(Bx)

FIGURE 2 Multiplication	by B and	then A.

Thus A.Bx/ is	produced	from x by	a composition of	mappings—the	linear	transfor-
mations	studied	in	Section 1.8. Our	goal	is	to	represent	this	composite	mapping	as
multiplication	by	a	single	matrix, denoted	by AB, so	that

A.Bx/ D .AB/x (1)

See	Fig. 3.

Multiplication

by AB

Bx

Multiplication

by B
x

Multiplication

by A
A(Bx)

FIGURE 3 Multiplication	by AB.

If A is m � n, B is n � p, and x is	in Rp , denote	the	columns	of B by b1; : : : ;bp

and	the	entries	in x by x1; : : : ; xp . Then

Bx D x1b1 C � � � C xpbp

By	the	linearity	of	multiplication	by A,

A.Bx/ D A.x1b1/ C � � � C A.xpbp/

D x1Ab1 C � � � C xpAbp
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The	vector A.Bx/ is	a	linear	combination	of	the	vectorsAb1; : : : ; Abp , using	the	entries
in x as	weights. In	matrix	notation, this	linear	combination	is	written	as

A.Bx/ D Œ Ab1 Ab2 � � � Abp �x

Thus	multiplication	by Œ Ab1 Ab2 � � � Abp � transforms x into A.Bx/. We	have
found	the	matrix	we	sought!

DEF IN I T I ON If A is	an m � n matrix, and	if B is	an n � p matrix	with	columns b1; : : : ; bp ,
then	the	product AB is	the m � p matrix	whose	columns	are Ab1; : : : ; Abp . That
is,

AB D A
�
b1 b2 � � � bp

�
D
�
Ab1 Ab2 � � � Abp

�
This	definition	makes	equation	(1)	true	for	all x in Rp . Equation	(1)	proves	that	the

composite	mapping	in	Fig. 3	is	a	linear	transformation	and	that	its	standard	matrix	is
AB . Multiplication	of	matrices	corresponds	to	composition	of	linear	transformations.

EXAMPLE 3 Compute AB , where A D

�
2 3

1 �5

�
and B D

�
4 3 6

1 �2 3

�
.

SOLUTION Write B D Œ b1 b2 b3 �, and	compute:

Ab1 D

�
2 3

1 �5

��
4

1

�
; Ab2 D

�
2 3

1 �5

��
3

�2

�
; Ab3 D

�
2 3

1 �5

��
6

3

�
D

�
11

�1

�
D

�
0

13

�
D

�
21

�9

�
? ?

?Then
AB D AŒ b1 b2 b3 � D

�
11 0 21

�1 13 �9

�
6 6 6

Ab1 Ab2 Ab3

Notice	that	since	the	first	column	of AB is Ab1; this	column	is	a	linear	combination
of	the	columns	of A using	the	entries	in b1 as	weights. A similar	statement	is	true	for
each	column	of AB:

Each	column	of AB is	a	linear	combination	of	the	columns	of A using	weights
from	the	corresponding	column	of B .

Obviously, the	number	of	columns	of A must	match	the	number	of	rows	in B in
order	for	a	linear	combination	such	as Ab1 to	be	defined. Also, the	definition	of AB

shows	that AB has	the	same	number	of	rows	as	A and	the	same	number	of	columns
as	B.

EXAMPLE 4 If A is	a 3 � 5 matrix	and B is	a 5 � 2 matrix, what	are	the	sizes	of
AB and BA, if	they	are	defined?



96 CHAPTER 2 Matrix Algebra

SOLUTION Since A has	5	columns	and B has	5	rows, the	product AB is	defined	and
is	a 3 � 2 matrix:

A B AB24� � � � �

� � � � �

� � � � �

35266664
� �

� �

� �

� �

� �

377775
D

24� �

� �

� �

35
3 � 5 5 � 2 3 � 2

6 66 6Match

Size	of AB

The	product BA is not defined	because	the	2	columns	of B do	not	match	the	3	rows
of A.

The	definition	of AB is	important	for	theoretical	work	and	applications, but	the
following	rule	provides	a	more	efficient	method	for	calculating	the	individual	entries	in
AB when	working	small	problems	by	hand.

ROW--COLUMN RULE FOR COMPUTING AB

If	the	product AB is	defined, then	the	entry	in	row i and	column j of AB is	the
sum	of	the	products	of	corresponding	entries	from	row i of A and	column j of
B . If .AB/ij denotes	the .i; j /-entry	in AB , and	if A is	an m � n matrix, then

.AB/ij D ai1b1j C ai2b2j C � � � C ainbnj

To	verify	this	rule, let B D Œ b1 � � � bp �. Column j of AB is Abj , and	we	can
compute Abj by	the	row–vector	rule	for	computing Ax from	Section 1.4. The i th entry
in Abj is	the	sum	of	the	products	of	corresponding	entries	from	row i of A and	the
vector bj , which	is	precisely	the	computation	described	in	the	rule	for	computing	the
.i; j /-entry	of AB .

EXAMPLE 5 Use	the	row–column	rule	to	compute	two	of	the	entries	in AB for	the
matrices	in	Example 3. An	inspection	of	the	numbers	involved	will	make	it	clear	how
the	two	methods	for	calculating AB produce	the	same	matrix.

SOLUTION To	find	the	entry	in	row 1	and	column 3	of AB , consider	row 1	of A and
column 3	of B . Multiply	corresponding	entries	and	add	the	results, as	shown	below:

AB D
-
�

2 3

1 �5

��
4 3

?
6

1 �2 3

�
D

�
� � 2.6/ C 3.3/

� � �

�
D

�
� � 21

� � �

�
For	the	entry	in	row 2	and	column 2	of AB , use	row	2	of A and	column 2	of B:

-

�
2 3

1 �5

��
4

?
3 6

1 �2 3

�
D

�
� � 21

� 1.3/ C �5.�2/ �

�
D

�
� � 21

� 13 �

�
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EXAMPLE 6 Find	the	entries	in	the	second	row	of AB , where

A D

2664
2 �5 0

�1 3 �4

6 �8 �7

�3 0 9

3775; B D

24 4 �6

7 1

3 2

35
SOLUTION By	the	row–column	rule, the	entries	of	the	second	row	of AB come	from
row 2	of A (and	the	columns	of B):

-

2664
2 �5 0

�1 3 �4

6 �8 �7

�3 0 9

3775
24

?
4

?
� 6

7 1

3 2

35

D

2664
� �

� 4 C 21 � 12 6 C 3 � 8

� �
� �

3775 D

2664
� �
5 1

� �
� �

3775
Notice	that	since	Example 6	requested	only	the	second	row	of AB , we	could	have

written	just	the	second	row	of A to	the	left	of B and	computed

�
�1 3 �4

�24 4 �6

7 1

3 2

35 D
�

5 1
�

This	observation	about	rows	of AB is	true	in	general	and	follows	from	the	row–column
rule. Let	rowi .A/ denote	the i th	row	of	a	matrix A. Then

rowi .AB/ D rowi .A/ � B (2)

Properties of Matrix Multiplication
The	following	theorem	lists	the	standard	properties	of	matrix	multiplication. Recall	that
Im represents	the m � m identity	matrix	and Imx D x for	all x in Rm.

THEOREM 2 Let A be	an m � n matrix, and	let B and C have	sizes	for	which	the	indicated
sums	and	products	are	defined.

a. A.BC / D .AB/C (associative	law	of	multiplication)
b. A.B C C / D AB C AC (left	distributive	law)
c. .B C C /A D BA C CA (right	distributive	law)
d. r.AB/ D .rA/B D A.rB/

for	any	scalar r

e. ImA D A D AIn (identity	for	matrix	multiplication)

PROOF Properties	(b)–(e)	are	considered	in	the	exercises. Property (a)	follows	from
the	fact	that	matrix	multiplication	corresponds	to	composition	of	linear	transformations
(which	are	functions), and	it	is	known	(or	easy	to	check)	that	the	composition	of	func-
tions	is	associative. Here	is	another	proof	of	(a)	that	rests	on	the	“column	definition”	of
the	product	of	two	matrices. Let

C D Œ c1 � � � cp �
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By	the	definition	of	matrix	multiplication,

BC D Œ Bc1 � � � Bcp �

A.BC / D Œ A.Bc1/ � � � A.Bcp/ �

Recall	from	equation	(1)	that	the	definition	of AB makes A.Bx/ D .AB/x for	all x, so

A.BC / D Œ .AB/c1 � � � .AB/cp � D .AB/C

The	associative	and	distributive	laws	in	Theorems 1	and	2	say	essentially	that	pairs
of	parentheses	in	matrix	expressions	can	be	inserted	and	deleted	in	the	same	way	as	in
the	algebra	of	real	numbers. In	particular, we	can	write ABC for	the	product, which
can	be	computed	either	as A.BC / or	as .AB/C .¹ Similarly, a	product ABCD of	four
matrices	can	be	computed	as A.BCD/ or .ABC /D or A.BC /D, and	so	on. It	does	not
matter	how	we	group	the	matrices	when	computing	the	product, so	long	as	the	left-to-
right	order	of	the	matrices	is	preserved.

The	left-to-right	order	in	products	is	critical	because AB and BA are	usually	not
the	same. This	is	not	surprising, because	the	columns	of AB are	linear	combinations
of	the	columns	of A, whereas	the	columns	of BA are	constructed	from	the	columns	of
B . The	position	of	the	factors	in	the	product AB is	emphasized	by	saying	that A is
right-multiplied by B or	that B is left-multiplied by A. If AB D BA, we	say	that A and
B commute with	one	another.

EXAMPLE 7 Let A D

�
5 1

3 �2

�
and B D

�
2 0

4 3

�
. Show	that	these	matrices	do

not	commute. That	is, verify	that AB ¤ BA.

SOLUTION

AB D

�
5 1

3 �2

��
2 0

4 3

�
D

�
14 3

�2 �6

�
BA D

�
2 0

4 3

��
5 1

3 �2

�
D

�
10 2

29 �2

�
Example	7	illustrates	the	first	of	the	following	list	of	important	differences	between

matrix	algebra	and	the	ordinary	algebra	of	real	numbers. See	Exercises	9–12	for	exam-
ples	of	these	situations.

WARNINGS:
1. In	general, AB ¤ BA.
2. The	cancellation 	 laws 	do not hold 	 for 	matrix 	multiplication. That 	 is, if

AB D AC , then	it	is not true	in	general	that B D C . (See	Exercise	10.)
3. If	a	product AB is	the	zero	matrix, you cannot conclude	in	general	that	either

A D 0 or B D 0. (See	Exercise	12.)

Powers of a Matrix
If A is	an n � n matrix	and	if k is	a	positive	integer, then Ak denotes	the	product	of kWEB

¹When B is	square	and C has	fewer	columns	than A has	rows, it	is	more	efficient	to	compute A.BC / than
.AB/C .
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copies	of A:

Ak D A � � � A„ƒ‚…
k

If A is	nonzero	and	if x is	in Rn; then Akx is	the	result	of	left-multiplying x by A

repeatedly k times. If k D 0; then A0x should	be x itself. Thus A0 is	interpreted	as	the
identity	matrix. Matrix	powers	are	useful	in	both	theory	and	applications	(Sections	2.6,
4.9, and	later	in	the	text).

The Transpose of a Matrix
Given	an m � n matrix A, the transpose of A is	the n � m matrix, denoted	by AT ,
whose	columns	are	formed	from	the	corresponding	rows	of A.

EXAMPLE 8 Let

A D

�
a b

c d

�
; B D

24�5 2

1 �3

0 4

35; C D

�
1 1 1 1

�3 5 �2 7

�
Then

AT
D

�
a c

b d

�
; BT

D

�
�5 1 0

2 �3 4

�
; C T

D

2664
1 �3

1 5

1 �2

1 7

3775

THEOREM 3 Let A and B denote	matrices	whose	sizes	are	appropriate	for	the	following	sums
and	products.

a. .AT /T D A

b. .A C B/T D AT C BT

c. For	any	scalar r , .rA/T D rAT

d. .AB/T D BTAT

Proofs	of	(a)–(c)	are	straightforward	and	are	omitted. For	(d), see	Exercise	33.
Usually, .AB/T is	not	equal	to ATBT, even	when A and B have	sizes	such	that	the
product ATBT is	defined.

The	generalization	of	Theorem	3(d)	to	products	of	more	than	two	factors	can	be
stated	in	words	as	follows:

The	transpose	of	a	product	of	matrices	equals	the	product	of	their	transposes	in
the reverse order.

The	exercises	contain	numerical	examples	that	illustrate	properties	of	transposes.
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NUMER ICAL NOTES

1. The	fastest	way	to	obtain AB on	a	computer	depends	on	the	way	in	which
the	computer	stores	matrices	in	its	memory. The	standard	high-performance
algorithms, such	as	in	LAPACK,	calculateAB by	columns, as	in	our	definition
of	the	product. (A version	of	LAPACKwritten	in	C++	calculatesAB by	rows.)

2. The	definition	of AB lends	itself	well	to	parallel	processing	on	a	computer.
The	columns	of B are	assigned	individually	or	in	groups	to	different	proces-
sors, which	independently	and	hence	simultaneously	compute	the	correspond-
ing	columns	of AB .

PRACTICE PROBLEMS

1. Since	vectors	in Rn may	be	regarded	as n � 1 matrices, the	properties	of	transposes
in	Theorem 3	apply	to	vectors, too. Let

A D

�
1 �3

�2 4

�
and x D

�
5

3

�
Compute .Ax/T , xTAT , xxT , and xTx. Is ATxT defined?

2. Let A be	a 4 � 4 matrix	and	let x be	a	vector	in R4. What	is	the	fastest	way	to
compute A2x? Count	the	multiplications.

2.1 EXERCISES
In	Exercises 1	and 2, compute	each	matrix	sum	or	product	if	it	is
defined. If	an	expression	is	undefined, explain	why. Let

A D

�
2 0 �1

4 �5 2

�
; B D

�
7 �5 1

1 �4 �3

�
;

C D

�
1 2

�2 1

�
; D D

�
3 5

�1 4

�
; E D

�
�5

3

�
1. �2A, B � 2A, AC , CD

2. A C 3B , 2C � 3E, DB , EC

In	the	rest	of	this	exercise	set	and	in	those	to	follow, assume	that
each	matrix	expression	is	defined. That	is, the	sizes	of	the	matrices
(and	vectors)	involved	“match”	appropriately.

3. Let A D

�
2 �5

3 �2

�
. Compute 3I2 � A and .3I2/A.

4. Compute A � 5I3 and .5I3/A, where

A D

24 5 �1 3

�4 3 �6

�3 1 2

35:

In	Exercises	5	and	6, compute	the	product AB in	two	ways: (a)	by
the	definition, where Ab1 and Ab2 are	computed	separately, and
(b)	by	the	row–column	rule	for	computing AB .

5. A D

24�1 3

2 4

5 �3

35; B D

�
4 �2

�2 3

�

6. A D

24 4 �3

�3 5

0 1

35; B D

�
1 4

3 �2

�
7. If	a	matrix A is 5 � 3 and	the	product AB is 5 � 7, what	is

the	size	of B?

8. How	many	rows	does B have	if BC is	a 5 � 4 matrix?

9. Let A D

�
2 3

�1 1

�
and B D

�
1 9

�3 k

�
. What	value(s)

of k, if	any, will	make AB D BA?

10. Let A D

�
3 �6

�1 2

�
, B D

�
�1 1

3 4

�
, and C D�

�3 �5

2 1

�
. Verify	that AB D AC and	yet B ¤ C .

11. Let A D

24 1 2 3

2 4 5

3 5 6

35 and D D

24 5 0 0

0 3 0

0 0 2

35. Com-

pute AD and DA: Explain	how	the	columns	or	rows	of A

change	when A is	multiplied	by D on	the	right	or	on	the	left.
Find	a 3 � 3 matrix B; not	the	identity	matrix	or	the	zero
matrix, such	that AB D BA.

12. Let A D

�
3 �6

�2 4

�
. Construct	a 2 � 2 matrix B such	that

AB is	the	zero	matrix. Use	two	different	nonzero	columns
for B:



2.1 Matrix Operations 101

13. Let r1; : : : ; rp be	vectors 	 in Rn, and	 let Q be	an m � n

matrix. Write	the	matrix Œ Qr1 � � � Qrp � as	a product of
two	matrices	(neither	of	which	is	an	identity	matrix).

14. Let U be	the 3 � 2 cost	matrix	described	in	Example	6	in
Section	1.8. The	first	column	of U lists	the	costs	per	dollar	of
output	for	manufacturing	product B; and	the	second	column
lists	the	costs	per	dollar	of	output	for	product C: (The	costs
are	categorized	as	materials, labor, and	overhead.) Let q1

be	a	vector	in R2 that	lists	the	output	(measured	in	dollars)
of	products	B and	C manufactured	during	the	first	quarter
of	the	year, and	let q2; q3; and q4 be	the	analogous	vectors
that	list	the	amounts	of	products	B and	C manufactured	in
the	second, third, and	fourth	quarters, respectively. Give	an
economic	description	of	the	data	in	the	matrix UQ; where
Q D Œ q1 q2 q3 q4 �:

Exercises	15	and	16	concern	arbitrary	matrices A, B , and C for
which	the	indicated	sums	and	products	are	defined. Mark	each
statement	True	or	False. Justify	each	answer.

15. a. If A and B are 2 � 2 matrices	with	columns a1, a2, and
b1, b2, respectively, then AB D Œ a1b1 a2b2 �.

b. Each 	 column 	 of AB is 	 a 	 linear 	 combination 	 of 	 the
columns	of B using	weights	from	the	corresponding	col-
umn	of A.

c. AB C AC D A.B C C /

d. AT C BT D .A C B/T

e. The	transpose	of	a	product	of	matrices	equals	the	product
of	their	transposes	in	the	same	order.

16. a. The	first	row	of AB is	the	first	row	of A multiplied	on	the
right	by B .

b. If A and B are 3 � 3 matrices	and B D Œ b1 b2 b3 �,
then AB D Œ Ab1 C Ab2 C Ab3 �.

c. If A is	an n � n matrix, then .A2/T D .AT /2

d. .ABC /T D C T AT BT

e. The	transpose	of	a	sum	of	matrices	equals	the	sum	of	their
transposes.

17. If A D

�
1 �3

�3 5

�
and AB D

�
�3 �11

1 17

�
, determine	the

first	and	second columns	of B .

18. Suppose	the	third	column	of B is	all	zeros. What	can	be	said
about	the	third	column	of AB?

19. Suppose	the	third	column	of B is	the	sum	of	the	first	two
columns. What	can	be	said	about	the	third	column	of AB?
Why?

20. Suppose	the	first	two	columns, b1 and b2, of B are	equal.
What	can	be	said	about	the	columns	of AB? Why?

21. Suppose	the	last	column	of AB is	entirely	zeros	but B itself
has	no	column	of	zeros. What	can	be	said	about	the	columns
of A?

22. Show	that	if	the	columns	of B are	linearly	dependent, then
so	are	the	columns	of AB .

23. Suppose CA D In (the n � n identity	matrix). Show	that	the
equation Ax D 0 has	only	the	trivial	solution. Explain	why
A cannot	have	more	columns	than	rows.

24. SupposeA is	a 3 � nmatrix	whose	columns	spanR3:Explain
how	to	construct	an n � 3 matrix D such	that AD D I3:

25. Suppose A is	an m � n matrix	and	there	exist n � m matrices
C and D such 	 that CA D In and AD D Im: Prove 	 that
m D n and C D D: [Hint: Think	about	the	product CAD.]

26. Suppose AD D Im (the m � m identity	matrix). Show	that
for	any b in Rm, the	equation Ax D b has	a	solution. [Hint:
Think	about	the	equation ADb D b:]	Explain	why A cannot
have	more	rows	than	columns.

In	Exercises	27	and	28, view	vectors	in Rn as n � 1 matrices. For
u and v in Rn, the	matrix	product uT v is	a 1 � 1 matrix, called	the
scalar	product, or inner	product, of u and v. It	is	usually	written
as	a	single	real	number	without	brackets. The	matrix	product uvT

is	an n � n matrix, called	the outer	product of u and v. The
products uT v and uvT will	appear	later	in	the	text.

27. Let u D

24�3

2

�5

35 and v D

24 a

b

c

35. Compute uT v, vT u, uvT ,

and vuT .

28. If u and v are	in Rn, how	are uT v and vT u related? How	are
uvT and vuT related?

29. Prove	Theorem	2(b)	and	2(c). Use	the	row–column	rule. The
.i; j /-entry	in A.B C C / can	be	written	as
ai1.b1j C c1j / C � � � C ain.bnj C cnj /

or
nX

kD1

aik.bkj C ckj /

30. Prove	Theorem	2(d). [Hint: The .i; j /-entry	in .rA/B is
.rai1/b1j C � � � C .rain/bnj .]

31. Show	that ImA D A where A is	an m � n matrix. Assume
Imx D x for	all x in Rm.

32. Show	that AIn D A when A is	an m � n matrix. [Hint: Use
the	(column)	definition	of AIn.]

33. Prove	Theorem	3(d). [Hint: Consider	the j th row	of .AB/T .]

34. Give	a	formula	for .ABx/T , where x is	a	vector	and A and B

are	matrices	of	appropriate	sizes.

35. [M] Read	the	documentation	for	your	matrix	program, and
write	the	commands	that	will	produce	the	following	matrices
(without	keying	in	each	entry	of	the	matrix).
a. A 4 � 5 matrix	of	zeros
b. A 5 � 3 matrix	of	ones
c. The 5 � 5 identity	matrix
d. A 4 � 4 diagonal	matrix, with	diagonal	entries	3, 4, 2, 5
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A useful	way	to	test	new	ideas	in	matrix	algebra, or	to	make
conjectures, is 	 to 	make	calculations 	with 	matrices 	selected 	at
random. Checking	a	property	for	a	few	matrices	does	not	prove
that	the	property	holds	in	general, but	it	makes	the	property	more
believable. Also, if	the	property	is	actually	false, making	a	few
calculations	may	help	to	discover	this.

36. [M] Write	the	command(s)	that	will	create	a 5 � 6 matrix
with	random	entries. In	what	range	of	numbers	do	the	entries
lie? Tell	how	to	create	a 4 � 4 matrix	with	random	integer
entries	between �9 and	9. [Hint: If x is	a	random	number
such	that 0 < x < 1, then �9:5 < 19.x � :5/ < 9:5.]

37. [M] Construct 	 random 4 � 4 matrices A and B to 	 test
whether AB D BA. The	best	way	to	do	this	is	to	compute
AB � BA and 	 check 	whether 	 this 	 difference 	 is 	 the 	 zero
matrix. Then	test AB � BA for	three	more	pairs	of	random
4 � 4 matrices. Report	your	conclusions.

38. [M] Construct	a	random 5 � 5 matrix A and	test	whether
.A C I /.A � I / D A2 � I . The	best 	way	to	do	 this 	 is 	 to
compute .A C I /.A � I / � .A2 � I / and 	verify 	 that 	 this
difference 	 is 	 the 	zero 	matrix. Do	 this 	 for 	 three 	 random
matrices. Then	test .A C B/.A � B/ D A2 � B2 the	same

way	for	three	pairs	of	random 4 � 4 matrices. Report	your
conclusions.

39. [M] Use	at 	 least 	 three	pairs 	of 	 random 4 � 4 matrices A

and B to 	 test 	 the 	 equalities .A C B/T D AT C BT and
.AB/T D BTAT , as	well	as .AB/T D ATBT . (See	Exercise
37.) Report	your	conclusions. [Note: Most	matrix	programs
use A0 for AT .]

40. [M] Let

S D

266664
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

377775
Compute Sk for k D 2; : : : ; 6.

41. [M] Describe	in	words	what	happens	when A5, A10, A20, and
A30 are	computed	for

A D

24 1=4 1=2 1=4

1=2 1=3 1=6

1=4 1=6 7=12

35

SOLUTIONS TO PRACTICE PROBLEMS

1. Ax D

�
1 �3

�2 4

��
5

3

�
D

�
�4

2

�
. So .Ax/T D

�
�4 2

�
. Also,

xTAT
D
�

5 3
�� 1 �2

�3 4

�
D
�

�4 2
�
:

The	quantities .Ax/T and xTAT are	equal, by	Theorem 3(d). Next,

xxT
D

�
5

3

��
5 3

�
D

�
25 15

15 9

�
xTx D

�
5 3

�� 5

3

�
D Œ 25 C 9 � D 34

A 1 � 1 matrix	such	as xTx is	usually	written	without	the	brackets. Finally, ATxT is
not	defined, because xT does	not	have	two	rows	to	match	the	two	columns	of AT .

2. The	fastest	way	to	compute A2x is	to	compute A.Ax/. The	product Ax requires
16	multiplications, 4	for	each	entry, and A.Ax/ requires	16	more. In	contrast, the
product A2 requires	64	multiplications, 4	for	each	of	the	16	entries	in A2. After	that,
A2x takes	16	more	multiplications, for	a	total	of	80.

2.2 THE INVERSE OF A MATRIX

Matrix	algebra	provides	tools	for	manipulating	matrix	equations	and	creating	various
useful	formulas	in	ways	similar	to	doing	ordinary	algebra	with	real	numbers. This
section	investigates	the	matrix	analogue	of	the	reciprocal, or	multiplicative	inverse, of
a	nonzero	number.




