Định nghĩa
Cho $V$ là không gian vector $n$ chiều, $W$ là không gian vector $m$ chiều, $B=\{u_1,u_2,\cdots,u_n\}$ là một cơ sở của $V$, $B'=\{v_1,v_2,\cdots,v_m\}$ là một cơ sở của $W$ và $f:V\to W$ xác định bởi $x\mapsto f\left(x\right)$ là ánh xạ tuyến tính.
Vì $x\in V$ và $f(x)\in W$ nên theo tính chất của KGVT thì $x$ luôn biểu thị tuyến tính được qua cơ sở $B$ trong $V$ và $f(x)$ luôn biểu thị tuyến tính được qua cơ sở $B'$ trong $W$.
Giả sử, $x=x_1u_1+x_2u_2+\cdots+x_nu_n$ và $f(x)\mathrm{=}{y_1v}_1\mathrm{+\ }{y_2v}_2\mathrm{+\dots +}{y_mv}_m$
Ta có, ${\left[x\right]}_B=\left[ \begin{array}{c}
x_1 \\
\vdots \\
x_n \end{array}
\right]$ và ${\left[f(x)\right]}_{B'}=\left[ \begin{array}{c}
y_1 \\
\vdots \\
y_m \end{array}
\right]$.
Nếu tồn tại ma trận $A\in {\mathcal{M}}_{m\times n}$ sao cho ${A\left[x\right]}_B={\left[f(x)\right]}_{B'}$ với mọi $x\in V$ thì $A$ được gọi là ma trận của ánh xạ tuyến tính $f$ đối với cơ sở $B$ trong $V$ và $B'$ trong $\ W$.